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ABSTRACT

Since proposed in the 70s, the Non-Equilibrium Green Function (NEGF) method has been recognized
as a standard approach to quantum transport simulations. Although it achieves superiority in simula-
tion accuracy, the tremendous computational cost makes it unbearable for high-throughput simulation
tasks such as sensitivity analysis, inverse design, etc. In this work, we propose AD-NEGF, to our best
knowledge the first end-to-end differentiable NEGF model for quantum transport simulations. We im-
plement the entire numerical process in PyTorch, and design customized backward pass with implicit
layer techniques, which provides gradient information at an affordable cost while guaranteeing the
correctness of the forward simulation. The proposed model is validated with applications in calcu-
lating differential physical quantities, empirical parameter fitting, and doping optimization, which
demonstrates its capacity to accelerate the material design process by conducting gradient-based
parameter optimization.

Keywords Quantum Transport, Non-Equilibrium Green Function, Automatic Differentiation, Differentiable
Programming, Deep Learning, Sensitivity Analysis, Inverse Design

1 Introduction

Electronic transport models are used to simulate electrical properties of devices, which are essential for circuit simulation,
semiconductor device fabrication, and so on (Jacoboni [2010], Wimmer [2009], Pourfath [2014]). Traditionally, the
transport process is formulated with the drift-diffusion model (Markowich et al. [2012]), where electrons and holes
in the device are treated as flows. However, with the improvement of semiconductor manufacturing, the quantum
effect is not negligible anymore (Anantram et al. [2008], Wang et al. [2008], Datta [1997]). Moreover, the classic
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macroscopic model relies on empirical models and parameters, hence not capable of handling the emergence of new
materials and new structures. These problems can be solved with first-principle quantum transport simulation, which
formulates microscale electronic devices at the atomic level. An important technique for quantum transport simulation
is the Non-Equilibrium Green Function (NEGF) method (Jacoboni [2010]), which solves the open system Schrödinger
equation. More specifically speaking, the Green function of the system is calculated considering the effect of the
contacting electrodes and the fixed bias voltage. It is then iterated with the Poisson equation which describes the
electrostatic potential field self-consistently. The NEGF method not only acts as a standard computational tool of
transport problems for researchers in academia, but is also widely adopted in the semiconductor industry, which vastly
accelerates the device design process.

Despite its advantages in accuracy, the first-principle simulation is extremely time and computation consuming. One
way to solve the dilemma is to build up learning-based surrogate models (Li et al. [2020], Bürkle et al. [2021], Pimachev
and Neogi [2021]). By learning from data generated with first-principle simulations beforehand, the surrogate model
is expected to maintain first-principle accuracy but achieves a much higher speed in usage. A fatal problem of such
methods is that, there is no guarantee for the model accuracy. This is a fundamental limit for machine learning, and is
especially non-negligible for high-dimensional and input-sensitive scenarios such as quantum transport simulations.

An alternative is to keep the forward numerical computation unchanged, but to make the whole process differentiable
by utilizing automatic differentiation techniques. In this way, gradient information can be obtained at a similar cost to
the forward pass, but faster and more accurate than the numerical differentiation. A direct application is to compute
differential physical properties, which is ubiquitous in scientific computation. Specifically, in quantum transport, there
are examples such as the differential conductance and resistance, as well as the Seebeck coefficient which describes
the sensitive thermoelectric power, etc. Moreover, the availability of gradients makes it possible to conduct efficient
gradient-based optimization, which can outperform black-box optimization methods. Recent advances have also shown
the value to apply differentiable programming in scientific computation scenarios, such as fluid dynamics (Schenck and
Fox [2018]), quantum chemistry (Kasim and Vinko [2021]), molecular dynamics (Schoenholz and Cubuk [2020]), etc.

In this work, we make the NEGF process differentiable with automatic differentiation techniques. The entire numerical
process of the quantum transport simulation is implemented in PyTorch, including the computation of the self-energy,
the Green function, the electrostatic potential, the transport properties, as well as a Slater-Koster Tight-Binding (SKTB)
module to generate the block tri-diagonal Tight-Binding (TB) Hamiltonian from atomic coordinates and TB parameters
(Klymenko et al. [2021]). The backward pass is improved by utilizing the implicit gradient techniques, the adjoint
sensitivity method for PDE, and our proposed image charge gradient method. We demonstrate its capability to efficiently
and accurately compute differential physical properties by comparing with numerical differentiation. Also, it is shown
that by cooperating AD-NEGF with the gradient-based optimizer, it can perform high-dimensional optimization at a
scale that is not affordable with conventional optimization approaches. Furthermore, in a more practical scenario of
material doping optimization where we optimize the empirical SK parameters of injected atoms, our method shows
significant advances in convergence speed and optimization results, compared with traditional black-box optimization
methods.

Our contributions can be summarized as follows:

• We propose and implement AD-NEGF, as far as we know the first end-to-end differentiable quantum transport
simulator, including the NEGF method, the Poisson equation module for self-consistent electrostatic potential
computation, and the SKTB module to generate the tight-binding Hamiltonian from the coordinates and
properties of the system atoms.

• The efficiency of the backward gradient computation is improved by applying the implicit gradient method,
the adjoint method for PDEs, as well as our proposed gradient computation for the image charge method.

• We validate the advantages of AD-NEGF in calculating differential transport quantities, high-dimensional
parameter fitting, and device optimization, where AD-NEGF outperforms numerical differentiation and
black-box optimization methods.

2 Related Works

NEGF. Originated from Keldysh [1964], Kadanoff [2018], NEGF has been a well-received method in the quantum
transport theory, which describes a system with a finite bias voltage and contact interactions in consideration. Recently,
NEGF based computation methods gain increasing popularity for the simplicity of the formulation, and the easy
implementation in programming (Ferry and Goodnick [1999], Taylor et al. [2001], Brandbyge et al. [2002], Fetter
and Walecka [2012]), which makes NEGF one of the most widely applied methods in transport calculation. Several
methods dedicated to improving its numerical stability and computational efficiency are proposed (Sancho et al. [1985],
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Figure 1: Workflow of the differentiable NEGF. The solid lines indicate the forward simulation pass. Loops in the
forward pass are where self-consistent iterations apply. The dotted lines indicate the backward gradient computation
pass.

Krstić et al. [2002], Rungger and Sanvito [2008]), some of which are widely implemented in modern quantum transport
simulation software, including but not limited to Papior et al. [2017], Smidstrup et al. [2019], Steiger et al. [2011].

AI for Quantum Transport. There have been works to apply machine learning techniques in quantum transport,
mostly by training a neural network with data generated from first-principle simulations, so that the neural network
can serve as an efficient surrogate model to predict transport properties, such as conductance (Bürkle et al. [2021],
Pimachev and Neogi [2021], Li et al. [2020]), transport coefficients (Lopez-Bezanilla and von Lilienfeld [2014]), etc.
Most existing methods use relatively simple deep learning models such as multi-layer perceptrons (Župančić et al.) and
convolutional networks (Han et al. [2021], Souma and Ogawa [2021, 2020]), while in some cases more advanced and
specially designed models are utilized (Bürkle et al. [2021]).

Differentiable Programming. Deep learning has been applied to more and more diverse scenarios, which require
the network structure to be more and more flexible. This generalization sometimes is referred to as differentiable
programming. It requires the automatic differentiation framework to support more numerical operations, such as
fixed-point iterations (Bai et al. [2019]), optimization (Amos and Kolter [2017]), ordinary differential equations (Chen
et al. [2018]), etc. Differentiable programming has been widely applied to physical simulations (Hu et al. [2019], Innes
et al. [2019]), such as rigid body dynamics (de Avila Belbute-Peres et al. [2018], Freeman et al. [2021]), computational
fluid dynamics (Kochkov et al. [2021], Schenck and Fox [2018]), ray tracing (Li et al. [2018]), etc. More specifically in
ab-initio simulations, there have been works for density functional theory (Li et al. [2021], Kasim and Vinko [2021]),
Hartree–Fock (Tamayo-Mendoza et al. [2018]), coupled cluster methods (Pavošević and Hammes-Schiffer [2020]), and
molecular dynamics (Schoenholz and Cubuk [2020]).

3 Methodology

3.1 Non-Equilibrium Green Function Method

In this section, we will first introduce the computation procedure of the NEGF method in brief, and then explain each
module in details. Consider a transport system containing a device region and two semi-infinite contacts that attach to
the left and right sides of the device, as shown in Figure 1. The contacts can also be referred to as leads or electrodes
interchangeably. According to the theory of quantum mechanics, the whole system, including the device and the
contacts, can be fully described by its Hamiltonian H . In this paper, we consider the Tight-Binding (TB) model (Slater
and Koster [1954]), which makes H block tri-diagonal. We assume a set of basis has been selected, and hence the full
process of NEGF can be expressed in the matrix form. The stationary Schrödinger equation of this open system is:

HΨ = EΨ, (1)
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where Ψ stands for the wave function of electrons, and E is a scalar value corresponding to the system energy. The
characteristics of the system are contained in its Green function

G = [EI −H]−1, (2)

where I is the identity matrix. However, the Hamiltonian H is infinitely large hence intractable. This is resolved by
computing the Green function only for the device part, while considering the effect of two semi-infinite contacts in a
term Σ called self-energy. The device Green function GD will be used to describe the non-equilibrium charge transfer
process by solving a Poisson equation in a self-consistent iteration. The output self-consistent potential field V and
device Green function GD can be used to compute transport properties such as transmission, current, etc. Each part is
further explained in the following.

Compute the Green Function. Although Equation (2) is mathematically correct, the Hamiltonian H describing an
infinite system is also infinitely large, making it impractical to compute. Since it is only the properties of the center
device that we are interested in, we can just describe the device Green function, and integrate all the other effects such
as the electrodes, the lattice vibration, and the charge redistribution, in a term Σ, which is referred to as self-energy:

GD = [EI −HD − Σ]−1. (3)

Here GD and HD state for the Green function and the Hamiltonian matrix of the device region. Directly computing the
matrix inversion is with complexity O(N3), which is unbearable as the matrix size is proportional to the vast amount of
atoms. By utilizing the block tri-diagonal form of the Hamiltonian matrix, an efficient recursive algorithm (Anantram
et al. [2008]) is implemented, which scales linearly with the system size.

Compute Electrode Self-Energy. One of the most critical parts to analyze the non-equilibrium state of a device is to
describe the effect of electrodes. Since the system is made up of a device and two semi-infinite contacts on the side,
Equation (2) can be expanded in the following form:[

AL ALD 0
ADL AD ADR

0 ARD AR

][
GL GLD GLR
GDL GD GDR
GRL GRD GR

]
= I, (4)

where A = [EI −H], and the subscripts are used to distinguish the matrix elements corresponding to the left lead
(L), the device (D), the right lead (R), and their interactions. Thanks to its block tri-diagonal form, the device Green
function GD satisfies

[AD −ADLA−1
L ALD −ADRA−1

R ARD]GD = I. (5)

Since AD = [EI −HD], compared with Equation (3), we have

ΣL = ADLA
−1
L ALD, (6)

ΣR = ADRA
−1
R ARD, (7)

Σ = ΣL + ΣR. (8)

Here we assume only the neighbouring layers have interactions with each other, and denote the left lead layer connected
to the device by l. Then the left self-energy can be simplified as ΣL = ADlA

−1
l AlD. The coupling matrix AlD is given

as input of NEGF. What remains unclear is A−1
l , the bottom-right block of A−1

L . This is known as the surface green
function, denoted as gs. By utilizing the ideal lead assumption that removing one layer of the lead will not change gs,
we obtain a self-consistent form:

g−1
s = [Al −Al,l−1gsA

†
l−1,l], (9)

where Al,l−1 is its coupling with the neighbouring layer. This equation can be used to calculate gs self-consistently. To
speed up the process, we implement the Lopez-Sancho algorithm (Sancho et al. [1985]), as illustrated in Algorithm
1, which converges exponentially faster than the conventional self-consistent iteration. We also implement a modern
method based on the generalized eigenvalue problem (Wang et al. [2008]) as an alternative.

Self-Consistent Iteration for Electrostatic Potential. In NEGF, charge transfer due to the applied bias voltage is
modeled as an external potential, which is attained self-consistently by solving the Poisson equation for electrostatics
with non-equilibrium charges. Denote the charge densities in the equilibrium and non-equilibrium states as ρ0 and ρ, and
the potential fields from the original neutral and redistributed charges as V0 and V . The equilibrium and non-equilibrium
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Algorithm 1 Lopez-Sancho algorithm for surface Green function
set εs0 = h0,0, ε0 = h0,0, α0 = h0,1 − ES0,1, β0 = h1,0 − ES1,0

repeat
εsi = εsi−1 + αi−1(ES − εi−1)−1βi−1,
εi = εi−1 + βi−1(ES − εi−1)−1αi−1 + αi−1(ES − εi−1)−1βi−1

αi = αi−1(ES − εi−1)−1αi−1

βi = βi−1(ES − εi−1)−1βi−1

until converge
g0,0 = (ES − εsm)−1

Hamiltonian can be expressed as H0 = T + V0, Hneq = T + V , where T is the kinetic energy. Poisson equations
relate potentials to the corresponding charge densities:{

∇ · ε(r)∇V (r) = −ρ(r),

∇ · ε(r)∇V0(r) = −ρ0(r).
(10)

Therefore we have ∇ · ε(r)∇[∆V (r)] = −[ρ(r) − ρ0(r)], where ∆V = V − V0 is used to correct the Hamiltonian
by Hneq = H0 + ∆V . The updated Hneq will again be used to update ∆V . Hence a self-consistent iteration is
constructed: {

∇ · ε(r)∇[∆V (r)] = −[ρ(r; ∆V )− ρ0(r)],

∆V (r)|{zL,zR} = {VL, VR}.
(11)

Charge densities are necessary input for the above equation. Denote potentials in left and right electrodes as ul and ur
(assume ul < ur), then the charge density ρ(r) = − i

2π

∫ +∞
−∞ dEG(E), which can be decomposed into equilibrium and

non-equilibrium terms:
ρ(r) = ρeq(r) + ρneq(r) (12)

=
1

π
Im

[∫ ul

−∞
dEGD(E)

]
+

1

2π

∫ ur

ul

dEGD(E). (13)

The first integration up to infinity can be computed efficiently using contour integration with the residue theorem. It is
achieved by expanding the Fermi-Dirac function, more details about which can be referred to in Ozaki [2007], Areshkin
and Nikolić [2010]. On the other hand, the non-equilibrium charge density ρneq is computed directly by numerical
integration. The density of neutral charges ρ0 can be computed by setting ul = ur = 0.

In implementation, the Poisson equation can be solved using numerical PDE solvers with spherical charges. Meanwhile,
a computationally more efficient image charge method using Fast Multipole Method (FMM) is preferred (Svizhenko
and Anantram [2005], Zahn [1976]). After the procedure converges to a stable solution, transport properties can be
computed accordingly.

Transport Electronic Properties. With the NEGF theory, electronic transport properties can be derived, such as
transmission probability (T (E)), density of states (DOS), electronic current (I), equilibrium and non-equilibrium
electronic densities (ρeq and ρneq), etc. Here we list some of the expressions.

T (E) = Trace[ΓL(E)GD(E)ΓR(E)G†D(E)], (14)

DOS(E) = − 1

π
Trace[Im(GD(E))], (15)

I =
2e

h̄

∫ +∞

−∞

dE

2π
T (E)[f(E − ul)− f(E − ur)], (16)

ρ(r) =
1

π
Im

[∫ ul

−∞
dEGD(E)

]
+

1

2π

∫ ur

ul

dEGD(E). (17)

For Equation (16), the integral range of the current is decided by the subtraction of the Fermi-Dirac function, which is a
little wider than (ul, ur).

3.2 Differentiating the NEGF Process

We choose to implement the differentiable NEGF model under PyTorch (Paszke et al. [2019]). We extend the autograd
function with implicit gradient techniques for calculating gradients through self-consistent iterations and the adjoint
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sensitivity method for calculating gradients through Poisson equations (Pontryagin [1987]). We also derive the gradient
formula for the image charge method (Svizhenko and Anantram [2005]), which is a more efficient solution for Poisson
equations, with the Fast Multipole Method (FMM) adopted for acceleration. The derived formula can be regarded
as a summation of point charges produced by the gradients, which can also be computed with FMM. Details of the
customized backward propagation modules are explained as follows.

Implicit Gradient. The implicit gradient method is implemented when the direct automatic differentiation through
function y = f(x) is unavailable or expensive to compute, and instances often arise when one wants to calculate
gradients through numerical solvers of equilibrium problems or complicated iterative algorithms. Based on the implicit
function theorem (Krantz and Parks [2002]), if there exists such constrained function h(y, x) = 0 where y is taken as
the converged output of function f , the gradient dydx can be given as:

dy

dx
= −

[
∂h(y, x)

∂y

]−1
∂h(y, x)

∂x
. (18)

We use the implicit gradient techniques to derive the gradient of the surface Green function (Sancho et al. [1985]),
where according to the ideal definition of the two semi-infinite leads, the converged surface Green function gs(θ) must
satisfy the self-consistent Equation (9). Hence h(gs, θ) = [All − All−1gsA

†
l−1l] − gs−1 = 0, where All stands for

[ESll−Hll], and θ denotes the input variables to compute gs. Thus we could write down the gradient of gs with respect
to θ explicitly by:

dgs
dθ

= −
[
∂h(gs, θ)

∂gs

]−1
∂h(gs, θ)

∂θ
. (19)

Here we should notice that, since such a constraint h is generally independent with the algorithm to compute the surface
Green function, this gradient form is also valid for other algorithms such as the method based on solving generalized
eigenvalue problems (Wang et al. [2008]).

Another scenario that the implicit gradient method can be applied to is to compute gradients through the self-consistent
Poisson equation loop, where the system electrostatic potential is updated until consistent with the bias voltage of
contacts and other boundaries conditions.

Adjoint Method for PDE. In order to perform backpropagation through the Poisson equation solver, gradients can
be evaluated with the adjoint sensitivity method (Pontryagin [1987]), which is often applied in constrained optimization
problems. Recent application in machine learning includes the Neural ODE (Chen et al. [2018]) and PDEs. Briefly
speaking, the adjoint method employs a solver similar to the original problem for calculating gradients.

Gradient of FMM image charge method. An alternative approach to solve the Poisson equation raised in Equation
(11), is to apply the point charge approximation, where the charge density is considered as the linear combination of a
series of point charges as ∆q(r) =

∑
i ∆qiδ(r − ri). Then by employing the linearity of the Poisson equation, the

original form can be further decomposed into a Laplace equation with Dirichlet boundary conditions and a Poisson
equation with zero Dirichlet boundary conditions:{

−∇2(∆V1(r)) = 0,

∆V1(r)|{zL,zR} = {VL, VR}.
(20){

−∇2(∆V2(r)) = 1
ε∆ρ(r),

∆V2(r)|Σ = 0.
(21)

The first Laplace equation can be easily solved by a linear drop potential. The second equation can be solved by
assuming the charge density as a combination of point charges of each atom site. The closed form solution can be
obtained using the image charge method (Svizhenko and Anantram [2005], Harb [2019]), and the second potential can
be written as:

V2(ri) =
∑

j∈N,j 6=i

qj
4πε

1√
t2ij + (zi − zj)2

+
∑
j∈N

qj
4πε

∞∑
n=1

 1√
t2ij + ∆2

1

− 1√
t2ij + ∆2

2

+
1√

t2ij + ∆2
3

− 1√
t2ij + ∆2

4

 , (22)
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Figure 2: A transport system of AGNR, with width 7 and length 5.

where t2ij = (xi − xj)2 + (yi − yj)2, and ∆2 stands for the distance in the transport direction between central charges
and charges from two electrodes. Therefore, the first term here describes the interactions inside the device, while all the
remaining terms simulate the effect of its coupling to charges outside. The summation of the second term is computed
until achieving certain accuracy, which is empirically hundreds of site numbers. Hence a direct summation is also
too expensive to compute. In this case, the Fast Multipole Method (Engheta et al. [1992]) is employed to reduce the
computational complexity from O(N3) to O(N4/3).

To perform backward propagation through the fast multipole layer, the gradient of the output potential to the charges is
required. By taking the derivative of a target objective L : Cd −→ R, the derivative of L with respect to charge qj can be
expanded as the image summation form of accumulated gradients from the last layer, which is:

∂L(V )

∂qj
=
∑
i

∂L

∂Vi

∂Vi
∂qj

(23)

=
∑

i∈N,i6=j

∂L/∂Vi
4πε

1√
t2ij + (zj − zi)2

+
∑
i∈N

∂L/∂Vi
4πε

∞∑
n=1

 1√
t2ij + ∆2

1

− 1√
t2ij + ∆2

2

+
1√

t2ij + ∆2
3

− 1√
t2ij + ∆2

4

 . (24)

Similarly, computing gradients of this form can be accelerated by the Fast Multipole Method, which is also with
complexity O(N4/3) and much faster than solving adjoint Poisson equations.

4 Applications

In this section, the results on several applications are displayed. For all experiments, we take graphene as the transport
system, including the Armchair Graphene NanoRibbon (AGNR) and the graphene nano-junction. The basic structure of
graphene is displayed in Figure 2. The experiments are organized as follows. We first validate the result of the forward
transport calculation of AD-NEGF by comparing with ASE (Larsen et al. [2017]), an atomistic simulation package
including electron transport modules. The differential transport properties calculated by AD-NEGF are compared
with numerical differentiation, including the Seebeck coefficient and the differential conductance, where it is shown
that AD-NEGF can achieve better accuracy and numerical stability. In what follows, two examples of gradient based
optimization are presented, one demonstrates the potential of conducting high-dimensional variable optimization with
the AD-NEGF framework, and the other highlights solving more practical end-to-end inverse design by cooperating
AD-NEGF with established material models.

4.1 Differential Transmission Quantity Computation

A direct and major application to perform differentiation on physical models is to evaluate differential physical quantities.
Most of the times, the analytical form is difficult to obtain. For numerical differentiation, there is a trade-off between the
round-off error and the truncation error when choosing the step-size ([Gautschi, 1997, Chap. 3]), and the computation
will be very expensive when the input dimension is high. On the contrary, automatic differentiation can achieve machine
precision while maintainingO(1) complexity when the output dimension is low and the input dimension is high (Baydin
et al. [2018]).

7
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Figure 3: Transmission Quantity Computation with AD-NEGF.

In this experiment, we first validate the correctness of the forward computation of AD-NEGF. As shown in Figure
3(a), the transmission coefficient and the density of states (DOS) of an AGNR system with width 7 are computed
by AD-NEGF, which perfectly match the results of ASE. Based on it, we compute two differential transmission
quantities, the Seebeck coefficient and the differential conductance, which are shown in Figure 3(b). The Seebeck
coefficient is the derivative of transmission T (E) with respect to the chemical potential E (Reddy et al. [2007]):
Sjunction = −π

2k2BT
3e

∂ln(T (E))
∂E , where T stands for the temperature and kB is the Boltzmann constant. The differential

conductance is the gradient of electronic current to voltage: ID = dI
dV .

The singularity of the transmission function leads to peaks in the Seebeck coefficient curve, which is highly sensitive thus
challenging for derivative calculation, as illustrated in Figure 4. To amplify the phenomenon for clearer demonstration,
the output transmission coefficient T (E) of the forward computation is transformed into half-precision floating-point
format for both automatic and numerical differentiation, before it is used to compute the Seebeck coefficient. It can
be seen that, with AD-NEGF, we can still generate high-quality results. However, for numerical differentiation, the
trade-off between the truncation error and the round-off error is observed by selecting different step-sizes from 1e-2
to 1e-5. With a large step-size, peaks may be skipped or mistakenly generated due to truncation error. With a small
step-size, lacking in machine precision causes noises on the curve. Specifically for step-size 1e-5, the calculated curve
becomes totally meaningless. Moreover, even though this is not a high-dimensional input situation, evaluating the
Seebeck coefficient with AD-NEGF can still be faster than numerical differentiation, since in AD-NEGF the backward
pass is improved. According to our experiments, for a smaller system with 70 carbon atoms, to compute the Seebeck
coefficient for 400 energy samples costs 71.1 seconds with AD-NEGF and 98.3 seconds with numerical differentiation.
For a larger system with 240 carbon atoms, to compute the Seebeck coefficient for 400 energy samples costs 363.1
seconds with AD-NEGF and 512.6 seconds with numerical differentiation.

To summarize, by conducting the above experiments, the correctness and effectiveness of AD-NEGF are validated.
With AD-NEGF, differential transport quantities can be calculated simply by calling one backward step. Moreover, the
process of computing derivatives is itself differentiable, permitting the computation of higher order derivatives, which
remains for further discovery.

4.2 Transmission Fitting

Inverse problems, which require to infer input parameters reversely from the output objectives, are in general difficult in
first-principle simulations. Black-box optimization methods require sampling a large number of input combinations,
the cost of which grows exponentially with the number of parameters. Based on the efficient and accurate gradient
computation by AD-NEGF, performing gradient-based optimization holds the potential to outperform black-box
optimization methods for high dimensional inverse problems.

We conduct a 104 dimensional optimization experiment to fit the transmission curve of one graphene nano-junction to
another. The target system is a 7-4 nano-junction, with 7 graphene rings on the left and 4 on the right. The fitting system
is a 5-2 nano-junction, and the fitting variables are the elements of its Hamiltonian, including the device, leads and the
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Figure 4: Comparison of Automatic Differentiation and Numerical Differentiation with different step-sizes.

corresponding couplings. The dimension of the optimizing variables is at the level of 104. The transmission curve,
as shown in Figure 5, is sampled with 2000 energy points from E ∈ (−5, 5). Since directly computing the gradients
of all 2000 points would not be efficient for iterations, we apply the stochastic gradient descent algorithm to conduct
mini-batch training, which has shown supremacy of efficiency and performance in high dimensional optimization
problems. The fitting parameters are trained with the Adam optimizer (Kingma and Ba [2014]) built in PyTorch, as this
task shares similarity with the process of training a neural network.

The results are displayed in Figure 5, where the loss is reduced to a considerably low level, which means the converged
parameters of the 5-2 nano-junction fit nicely to the larger 7-4 nano-junction. The fitted curve is akin to a smoothed
version of the curve of the 7-4 junction, which agrees with the intuition since a graphene junction of 5-2 is of less
freedom than that of a 7-4 nano-junction. On the other hand, we have also tried traditional methods on this problem such
as the Bayesian optimization, the genetic algorithm, and gradient-based optimization with numerical differentiation, but
none of them can even work for this high-dimensional problem.

This experiment demonstrates that, AD-NEGF, by cooperating with gradient-based optimization methods, can handle
inverse design tasks that are intractable for conventional parameter optimization methods because of the curse of
dimensionality.

4.3 On-Site Doping Optimization

Modern material engineering is capable of manipulating at the atomic level. More specifically speaking, by performing
processes such as deformation, doping, etc., microscopic physical quantities such as atomic spatial coordinates, bond
lengths and doping positions can be changed, which further modify the macroscopic material properties. Doping process
is one of the most common techniques in material development, which can dramatically change the properties of the
original material, by injecting foreign atoms into specific positions. In this experiment, we further explore the possibility
to solve practical inverse problems with AD-NEGF by performing an end-to-end doping optimization cooperated with
established material models.

9



AD-NEGF: An End-to-End Differentiable Quantum Transport Simulator A PREPRINT

0 250 500 750 1000 1250 1500 1750
iter

0.25

0.50

0.75

1.00

lo
ss

4 2 0 2 4
E/eV

0

1

2

3

T(
E)

7-4(target) 5-2(initial) 5-2(fitted)
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Figure 6: Comparison between AD-NEGF and conventional black-box optimization methods in the doping optimization
task.

In this experiment, we try to reduce the average transmission of AGNR (7) between energies -1eV and 1eV by
injecting other atoms into the center of the AGNR system along the transmission direction. A reduction of transmission
coefficient near zero Energy point would indicate an increase of the truncation voltage, which changes the semi-
conductive properties of the device (Wu et al. [2013]). Doping can be modeled as an effective change in the site and
the hopping terms in the tight-binding Hamiltonian, i.e., the diagonal and off-diagonal elements of the Hamiltonian
matrix. This on-site approximation allows us to treat doping optimization as tuning local terms in the Hamiltonian
influenced by the injected atoms. However, although the process above is applicable, the tuning terms in the TB
Hamiltonian need to be distinguished carefully from those invariant ones. It will be more convenient to cooperate with
an SKTB model, which constructs the TB Hamiltonian based on strict rules of local dependence of atom identities and
their semi-empirical SK parameters. Beside convenience, it has more concrete physical interpretation than directly
optimizing elements of the Hamiltonian, since it provides guidelines for practitioners to find the possible atom satisfying
the SKTB parameters from the optimization result. In this way, doping optimization is modeled as an optimization of
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the SKTB parameters of the doped atoms, which include the orbital energy and parameters for two center integrals. The
total number of the optimization variables is 13.

For comparison, we also perform black-box optimizations including the genetic algorithm and the Bayesian optimization.
The results are displayed in Figure 6. In the loss diagram, the gradient based method converges significantly faster and
better than the other approaches, especially in the beginning of the training. The loss curves of the genetic optimization
and the Bayesian optimization are also dropping, but much slower and less effective, with either the running time or the
iteration steps as the x-axis. Moreover, their performances are sensitive to preset higher-parameters. Corresponding
to the loss curves, the results of optimized transmission curves demonstrate the advantages of AD-NEGF in a more
straightforward way, where the gradient-based optimization gives a much cleaner band with low transmission in the
target interval (-1eV, 1eV) compared to other methods. These results validate the effectiveness of the AD-NEGF method
in conducting practical atomic level inverse design to optimize transport properties by cooperating with material models.

5 Conclusion

In this paper, we have proposed AD-NEGF, the first end-to-end differentiable quantum transport simulator to our best
knowledge. It aims to improve the efficiency of first-principle transport simulations by providing gradient information
based on differentiable programming. Compared with numerical differentiation, gradients can be computed more
efficiently and accurately. Moreover, it accelerates parameter fitting and parameter optimization with gradient-based
optimization. The results are validated on applications such as differential physical quantity computation, transmission
parameter fitting, and device optimization.
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Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable monte carlo ray tracing through edge
sampling. ACM Transactions on Graphics (TOG), 37(6):1–11, 2018.

Li Li, Stephan Hoyer, Ryan Pederson, Ruoxi Sun, Ekin D Cubuk, Patrick Riley, Kieron Burke, et al. Kohn-sham
equations as regularizer: Building prior knowledge into machine-learned physics. Physical review letters, 126(3):
036401, 2021.

Teresa Tamayo-Mendoza, Christoph Kreisbeck, Roland Lindh, and Alán Aspuru-Guzik. Automatic differentiation in
quantum chemistry with applications to fully variational hartree–fock. ACS central science, 4(5):559–566, 2018.
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